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Abstract

Neutron-powder-diffraction measurements of bulk, polycrystalline, rare-earth deuterides (RD , 2,y,3, R5Y, Nd, Tb, Dy, Ho, Er, Tm,y

and Lu) have been made in theb-RD /g-RD two-phase region at room temperature. The phase-boundary lattice parameters andx21x 32z

and z values for the superstoichiometric f.c.c. dideuteride and substoichiometric h.c.p. trideuteride phases, respectively, have been
determined by Rietveld refinement.
Published by Elsevier B.V.
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1 . Introduction 99.9% atomic fraction typically yielding deceptive results).
Moreover, there is some confusion over the phase-bound-

For Y and most lanthanide rare-earth metals heavier than ary values ofz (z ). Although there are indications thatmax

Pr (with the exception of mixed-valent Yb and Eu), the z is only at the percent level for bulkg-RH systemsmax 32z

rare-earth–hydrogen phase diagram possesses a two-phase [2,3,4], epitaxial thin-film materials have been reported to
region of superstoichiometric f.c.c. dihydride (b-RH ) have vacancy fractions up to 0.15 [5]. For this to be21x

and substoichiometric h.c.p. trihydride (g-RH ). For b- possible, substrate clamping effects must result in nonbulk-32z

RH , there are two interstitial tetrahedral (t) sites and like behavior that enables much larger vacancy fractions21x

one interstitial octahedral (o) site per f.c.c. R atom. Thet than observed for bulk materials. It is not clear yet whether
sites are completely filled with hydrogen, with theo sites or not this is the case.
accommodating the remainingx hydrogens. Similarly for Neutron powder diffraction (NPD) is known to be a
g-RH , there are two distortedt sites and one highly particularly powerful technique for determining the hydro-32z

displacedo site (more appropriately called a metal-plane or gen location and content in metal hydrides. Typically one
m site) per h.c.p. R atom. The distortedt sites are uses deuterium instead of hydrogen in order to avoid the
completely filled with hydrogen, with them sites accom- much larger hydrogen incoherent scattering background.
modating the remaining 12z hydrogens. Hence,z is a Thus, in the present study, we performed systematic room-
measure of the fraction ofm-site vacancies. Theb-RH / temperature NPD measurements of theb-RD /g-RD21x 21x 32z

g-RH phase-boundary value ofx (x ) is extremely two-phase region for a series of eight rare-earth–deuterium32z max

element-dependent, varying widely from nearly 1 to nearly binary alloys (where R5Y, Nd, Tb, Dy, Ho, Er, Tm, and
0 as one goes from the lighter to the heavier rare-earth Lu). Subsequent data analyses via Rietveld refinement
metals. Values forx have been estimated by various yielded the phase-boundary lattice parameters as well asmax

techniques for the different rare-earth–hydrogen systems, the magnitudes of bothx and z .max max

although exact magnitudes have been found to depend
somewhat on starting metal purity [1] (i.e. metal purities of
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Lu were synthesized as discussed elsewhere [6]. (Sm and NPD pattern, indicative of a lower unknown symmetry.
Gd were avoided because of their strong neutron absorp- This was also apparent from the more complex hydrogen
tion cross sections). Typically, the pure dideuterides were vibrational density of states found forg-LuH compared to3

prepared first, followed by the calibrated addition of excess the other rare-earth trihydrides [4]. Preliminary analyses of
D to yield alloys in the two-phase region or single-phase the single-phaseg-LuD NPD pattern indicated that the3

trideuterides. Rare-earth metal purities were 99.99%. main peaks could be satisfactorily modeled usingP6 /3

Deuterium isotope enrichment was 99.9%. All samples mmc symmetry with a reduced unit cell, although there
were finely pulverized to avoid preferential orientation and were numerous minor diffraction features that could not be
sealed inside cylindrical vanadium cans. All NPD mea- indexed [4]. For the sake of refinement of the minor
surements were taken at the NIST Center for Neutron g-LuD phase present in LuD ,P6 /mmc symmetry32z 2.10 3

Research on the high-resolution, 32-counter BT-1 diffrac- was assumed.
tometer [7]. The Cu(311) monochromator was used at a Table 1 summarizes the refined room-temperaturexmax

˚ values and lattice parameters for theb andg phases withinwavelength of 1.5396(1) A. The wavelength was calibrated
the two-phase region. Thez values were estimated to beusing a NIST Si standard reference material. The horizon- max

of the order of 0.01 or less for all rare-earth metalstal divergences were 159, 209, and 79 of arc for the in-pile,
measured and could not be more precisely determined bymonochromatic-beam, and diffracted-beam collimators,
refinement. In order to obtain such an estimate, werespectively. Data were collected every 0.058 over a 2u

2routinely determined the goodness of fitx for a range ofangular range of 3 to 1688. All refinements were carried
discrete z values near zero, each time holdingz fixedout with the Rietveld method [8] using the program GSAS

2during the refinement. Fig. 1 illustrates the behavior ofx ,[9]. Wavelength errors were not included in the standard
typical of all rare-earth deuterides measured, as exem-deviations of the unit cells, i.e., the precisions reported in
plified for single-phaseg-YD and the two-phase alloythis paper for the structural parameters reflect the quality 3

YD . The latter was synthesized from the single-phaseof the data and the corresponding Rietveld refinement 2.92

sample by removing the equivalent of 0.08 D/Y followedmodel, assuming a fixed neutron wavelength.
2by reequilibration. It is clear thatx is sensitive to small

changes inz and is minimized nearz¯0 for the pureg
phase, consistent with the stoichiometry determined by D2

uptake. Moreover, the position of the minimum does not
3 . Results and discussion change significantly (i.e.Dz,0.01) for the case ofg-

YD in the two-phase region. This behavior was checked32z

Room-temperature NPD patterns were measured for thefurther for the Y–D system by removing the equivalent of
following rare-earth deuterides in the two-phase region: only 0.01 D/Y from single-phaseg-YD and reequilibrat-3

YD , NdD , TbD , DyD , HoD , ErD , ing the resulting YD sample. The subsequent room-2.35 2.96 2.35 2.35 2.35 2.35 2.99

TmD , and LuD . Moreover, room-temperature pat- temperature refinement established that a two-phase alloy2.35 2.10

terns were measured for the corresponding single-phasehad already formed with approximately 0.9(1) mole %b
rare-earth trideuterides, except forg-NdD . In general, the phase present. A simple D mass balance indicated that the3

data were satisfactorily refined assuming that the room- change in trideuteride vacancy fraction from YD to3

temperature f.c.c.b-RD and h.c.p.g-RD phases had YD was Dz¯0.001(1).21x 32z 2.99
¯ ¯Fm3m and P3c1 symmetries, respectively [4,10,11]. Al- In order to ensure goodx values, we routinelymax

2though it is known that the superstoichiometricb-RD determinedx andx for a range of discrete D thermal21x max o

alloys can undergo transitions marked by ordering within factors U , each time holdingU fixed during theD Do o

the Do-site sublattice with a concomitant tetragonal lattice refinement. The value ofx was chosen for that value ofmax
2distortion [12,13], these tend to occur at lower tempera- U corresponding to a minimum inx . In general, theDo

tures for the alloys in question. One exception is refinedx values and correspondingb /g-phase mole %max

TbD , where the room-temperature symmetry is ratios lead to calculated overall RD stoichiometries that21x ymax

indeed tetragonal (I4/mmm) because a long-range D - are reasonably consistent with those determined by Do 2

ordering transition was found to commence at a higher uptake during the alloy syntheses. LuD refinements2.10

temperature of̄ 330 K [14]. As for theg-RD phases, yielded the largest percentage discrepancy above the32z

there are some indications that the true local symmetry dideuteride with a calculated stoichiometry of LuD .2.06

may very well beP6 cm or P6 [4,15–19]. (In the latter This most likely was due to the inadequacy of the assumed3 3
¯case, a diffraction-averageP3c1 symmetry presumably g-phase P6 /mmc symmetry mentioned above, which3

results from a microtwinning or quantum superposition of ignores the extra minor LuD peaks that are present.32z

degenerateP6 configurations). In any case, refinements of The refined b-phase lattice parametersa and x3 c max
¯the present data using eitherP3c1 or P6 cm symmetry values are plotted against atomic number in Fig. 2,3

typically yielded the same result. The only exception was illustrating the general trend of decreasingo-site occupa-
the g-LuD phase, which possessed a more complex tion and unit-cell size with increasing atomic number.32z
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Table 1
Room-temperature lattice parameters andx values for various two-phase rare-earth deuterides and single-phase rare-earth trideuterides as determined bymax

Rietveld refinement of NPD data

R Atomic No. For RD , x Reported values b-RD /g-RD Two-phase Two-phase Single-phasey max 21x 32z
a c d d¯ ¯ ¯y (exp.) for RH mole % ratio b phase [Fm3m] g phase [P3c1] g-RD [P3c1]y 3
b ˚ ˚ ˚y (calc.) (x ), Ref. (refined) (a , A) a (A) a (A)max c

˚ ˚c (A) c (A), Ref.

Y 39 2.20 0.077(4) 0.10 [24] 87.2/12.8 5.1954(1) 6.3517(4) 6.3440(2)
2.20 6.6009(5) 6.5997(3) [2]

Nd 60 2.96 0.87(2) 0.65 [25] 43/57 5.4187(4) 6.6423(5) not measured
2.94 6.8811(6)

a 55.2247(2),t

cTb 65 2.35 0.218(8) 0.25 [1] 87.3/12.7 c 510.4676(4) 6.3949(5) 6.3933(2)t

2.32 6.6400(7) 6.6416(2) this work

Dy 66 2.35 0.182(5) 0.23 [24] 84.2/15.8 5.1884(1) 6.3482(3) 6.3442(2)
2.31 6.5967(4) 6.5984(3) [3]

Ho 67 2.35 0.120(3) 0.15 [1] 76.1/23.9 5.15051(8) 6.3008(2) 6.2992(2)
2.33 6.5531(3) 6.5538(2) this work

Er 68 2.35 0.096(7) 0.1 [26] 71.7/28.3 5.1140(1) 6.2569(3) 6.2576(2)
2.35 6.5112(4) 6.5145(3) this work

Tm 69 2.35 0.058(6) – 67.7/32.3 5.08077(5) 6.2178(4) 6.2168(2)
2.36 6.4768(5) 6.4770(2) this work

d dLu 71 2.10 0.010(3) 0.03 [1] 94.5/5.5 5.02176(8) 3.5529(3) 3.5542(2)
2.06 6.4124(8) 6.4146(3) this work

a Experimental RD stoichiometry from synthesis.y
b Calculated RD stoichiometry from refinement.y
c The b-TbD phase was refined in space groupI4/mmm, and a and c are tetragonal lattice parameters.21x t t
d The g-LuD phase was refined in space groupP6 /mmc with a reduced unit cell.32z 3

From the observed behavior of the nonlanthanide Y with x value of 0.87(2) for NdD . Significantly smallermax 2.96

respect to the lanthanides, it is obvious that the magnitudex values of 0.61 and̄ 0.65 were reported for Ndmax

of x depends on more than simply unit-cell size. The deuteride [11] and hydride [25], respectively. (Themax

somewhat largerx values reported for the corre- deuteride value is included in Fig. 2). This is somewhatmax

sponding R–H alloys and also summarized in Table 1 are
an isotope effect consistent with the slightly largerb-phase
lattice parameters that result from replacing D with H
[11,24]. One discrepancy with the literature is the refined

Fig. 2. The refinedb-RD lattice parametersa and x values21x c maxmax

plotted against atomic number of the lanthanides. For tetragonalb-
TbD , an average cubic lattice parametera 5(2a 1c /2) /3 is plotted2.218 c t t

instead. As indicated by the dashed lines, the lattice parameter vs. atomic
number curve was used to determine the ‘effective’ atomic number
position to plot the Yx value for comparison. Open symbols for Ndmax

2Fig. 1. Plot of x versusz for single-phaseg-YD and the YD [11], Sm [20], and Gd [21] refer to values determined from the literature,max 3 2.92

two-phase alloy. as explained in the text.
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interactions increasingly offset energy gains due to R–D
bond shortening or the addition of new R–D bonds,
leading to a decrease in theb-RD homogeneity range.21x

In contrast tox , the value ofz (the g-phasem-sitemax max

vacancy fraction) was found to be very small, on the order
of 0.01 or less for all R–D alloys measured. As such, no
similar trend for z with atomic number could bemax

definitively established. It is clear that more neutron
diffraction measurements of epitaxial thin-film specimens
are needed, in particular, to verify the order-of-magnitude
larger values ofz suggested by other methods [5].max
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